25 research outputs found

    What are the evolutionary constraints on larval growth in a trophically transmitted parasite?

    Get PDF
    For organisms with a complex life cycle, a large larval size is generally beneficial, but it may come at the expense of prolonged development. Individuals that grow fast may avoid this tradeoff and switch habitats at both a larger size and younger age. A fast growth rate itself can be costly, however, as it requires greater resource intake. For parasites, fast larval growth is assumed to increase the likelihood of host death before transmission to the next host occurs. Using the tapeworm Schistocephalus solidus in its copepod first intermediate host, I investigated potential constraints in the parasite’s larval life history. Fast-growing parasites developed infectivity earlier, indicating there is no functional tradeoff between size and developmental time. There was significant growth variation among full-sib worm families, but fast-growing sibships were not characterized by lower host survival or more predation-risky host behavior. Parental investment also had little effect on larval growth rates. The commonly assumed constraints on larval growth and development were not observed in this system, so it remains unclear what prevents worms from exploiting their intermediate hosts more aggressively

    Host Responses in Life-History Traits and Tolerance to Virus Infection in Arabidopsis thaliana

    Get PDF
    Knowing how hosts respond to parasite infection is paramount in understanding the effects of parasites on host populations and hence host–parasite co-evolution. Modification of life-history traits in response to parasitism has received less attention than other defence strategies. Life-history theory predicts that parasitised hosts will increase reproductive effort and accelerate reproduction. However, empirical analyses of these predictions are few and mostly limited to animal-parasite systems. We have analysed life-history trait responses in 18 accessions of Arabidopsis thaliana infected at two different developmental stages with three strains of Cucumber mosaic virus (CMV). Accessions were divided into two groups according to allometric relationships; these groups differed also in their tolerance to CMV infection. Life-history trait modification upon virus infection depended on the host genotype and the stage at infection. While all accessions delayed flowering, only the more tolerant allometric group modified resource allocation to increase the production of reproductive structures and progeny, and reduced the length of reproductive period. Our results are in agreement with modifications of life-history traits reported for parasitised animals and with predictions from life-history theory. Thus, we provide empirical support for the general validity of theoretical predictions. In addition, this experimental approach allowed us to quantitatively estimate the genetic determinism of life-history trait plasticity and to evaluate the role of life-history trait modification in defence against parasites, two largely unexplored issues

    Population genomics of ancient and modern Trichuris trichiura.

    Get PDF
    The neglected tropical disease trichuriasis is caused by the whipworm Trichuris trichiura, a soil-transmitted helminth that has infected humans for millennia. Today, T. trichiura infects as many as 500 million people, predominantly in communities with poor sanitary infrastructure enabling sustained faecal-oral transmission. Using whole-genome sequencing of geographically distributed worms collected from human and other primate hosts, together with ancient samples preserved in archaeologically-defined latrines and deposits dated up to one thousand years old, we present the first population genomics study of T. trichiura. We describe the continent-scale genetic structure between whipworms infecting humans and baboons relative to those infecting other primates. Admixture and population demographic analyses support a stepwise distribution of genetic variation that is highest in Uganda, consistent with an African origin and subsequent translocation with human migration. Finally, genome-wide analyses between human samples and between human and non-human primate samples reveal local regions of genetic differentiation between geographically distinct populations. These data provide insight into zoonotic reservoirs of human-infective T. trichiura and will support future efforts toward the implementation of genomic epidemiology of this globally important helminth
    corecore